ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant,

$$G = 6.67 \times 10^{-11} \,\mathrm{m}^3/(\mathrm{kg} \cdot \mathrm{s}^2) = 6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$$

1 atmosphere of pressure,

1 atm =
$$1.0 \times 10^5 \,\text{N/m}^2 = 1.0 \times 10^5 \,\text{Pa}$$

Acceleration due to gravity at Earth's surface,

$$g = 9.8 \text{ m/s}^2$$

Magnitude of the gravitational field strength at the

Earth's surface, g = 9.8 N/kg

PREFIXES				
Factor	Symbol			
10^{12}	tera	Т		
109	giga	G		
10^{6}	mega	M		
10^{3}	kilo	k		
10 ⁻²	centi	c		
10^{-3}	milli	m		
10 ⁻⁶	micro	μ		
10-9	nano	n		
10 ⁻¹²	pico	p		

	hertz,	Hz	newton,	N
UNIT	joule,	J	pascal,	Pa
SYMBOLS	kilogram,	kg	second,	s
	meter,	m	watt,	W

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base $C = circumference$	$a^2 + b^2 = c^2$
Triangle	Cylinder	s	h = height	$\sin \theta = \frac{a}{a}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$	θ	$\ell = \text{length}$ $r = \text{radius}$	$\cos \theta = \frac{b}{a}$
2	$S = 2\pi r\ell + 2\pi r^2$	\	s = arc length $S = $ surface area	C
Circle	Sphere		V = volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$	\ /	w = width	c
$C = 2\pi r$	3		θ = angle	90° μα
$s = r\theta$	$S = 4\pi r^2$			b

MECHANICS AND FLUIDS

r = radius, distance, or

	MECHA
$\begin{aligned} v_x &= v_{x0} + a_x t \\ x &= x_0 + v_{x0} t + \frac{1}{2} a_x t^2 \\ v_x^2 &= v_{x0}^2 + 2 a_x \left(x - x_0 \right) \\ \vec{x}_{cm} &= \frac{\sum_{i=1}^{m} \vec{x}_i}{\sum_{i=1}^{m} m_i} \\ \vec{a}_{sys} &= \frac{\sum_{i=1}^{m} \vec{F}_{net}}{m_{sys}} \\ \begin{vmatrix} \vec{F}_g \end{vmatrix} &= G \frac{m_1 m_2}{r^2} \\ \begin{vmatrix} \vec{F}_f \end{vmatrix} &\leq \mu \vec{F}_n \\ \vec{F}_s &= -k \Delta \vec{x} \\ a_c &= \frac{v^2}{r} \\ K &= \frac{1}{2} m v^2 \\ W &= F_{\parallel} d = F d \cos \theta \\ \Delta K &= \sum_{i=1}^{m} W_i = \sum_{i=1}^{m} F_{\parallel,i} d_i \\ \Delta U_s &= \frac{1}{2} k (\Delta x)^2 \\ U_G &= -\frac{G m_1 m_2}{r} \\ \Delta U_g &= mg \Delta y \\ P_{avg} &= \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t} \\ P_{inst} &= F_{\parallel} v = F v \cos \theta \\ \vec{p} &= m \vec{v} \\ \vec{F}_{net} &= \frac{\Delta \vec{p}}{\Delta t} = m \vec{a} \\ \vec{J} &= \vec{F}_{avg} \Delta t = \Delta \vec{p} \end{aligned}$	a = acceleration d = distance E = energy F = force J = impulse k = spring constant K = kinetic energy m = mass p = momentum P = power r = radius, distance, position t = time U = potential energy v = velocity or speed W = work x = position y = height θ = angle μ = coefficient of frice
$\vec{v} = \sum_{i} \vec{p}_{i} = \sum_{i} (m_{i} \vec{v}_{i})$	